numpy.zeros定义某种形状为0的矩阵
ham=np.zeros((4,2,4,2)) print(ham) >> [[[[0. 0.] [0. 0.] [0. 0.] [0. 0.]] [[0. 0.] [0. 0.] [0. 0.] [0. 0.]]] [[[0. 0.] [0. 0.] [0. 0.] [0. 0.]] [[0. 0.] [0. 0.] [0. 0.] [0. 0.]]] [[[0. 0.] [0. 0.] [0. 0.] [0. 0.]] [[0. 0.] [0. 0.] [0. 0.] [0. 0.]]] [[[0. 0.] [0. 0.] [0. 0.] [0. 0.]] [[0. 0.] [0. 0.] [0. 0.] [0. 0.]]]]
np.array是定义一个矩阵,参数必须为矩阵的元素
ham=np.array( [ [ [ [1,2], [3,4],], [ [5,6], [7,8],] ], [ [ [9,10], [11,12],], [ [13,14], [15,16],] ], ] ) print(ham) >> [[[[ 1 2] [ 3 4]] [[ 5 6] [ 7 8]]] [[[ 9 10] [11 12]] [[13 14] [15 16]]]]
通过reshape函数在不更改数据的情况下为数组赋予新形状
ham=np.array( [ [ [ [1,2], [3,4],], [ [5,6], [7,8],] ], [ [ [9,10], [11,12],], [ [13,14], [15,16],] ], ] ) ham=ham.reshape((4,4)) print(ham) >> [[ 1 2 3 4] [ 5 6 7 8] [ 9 10 11 12] [13 14 15 16]]
No Comments
Leave a comment Cancel